M1. (a) Water or $\underline{H}_{2} \mathrm{O}$ or molecules (in ice) are held further apart
(than in liquid water)/(more) space/gaps/holes in structure/Water or $\underline{H}_{2} \underline{O}$ or molecules (in ice) are more spread out

Allow water (liquid) is more compact/less space/gaps/holes
$C E$ if holes filled with air, O_{2} etc
CE if macromolecule
CE if atoms further apart (since ambiguous)
Ignore spaces filled with $\mathrm{H}_{2} \mathrm{O}$
Ignore reference to H bonds
Allow better tessellation in liquid water
(b) (i) Hydrogen bonding

Allow H bonds
Do not allow 'hydrogen' only but mark on
(ii) Van der Waals'/VdW

Allow London forces, dispersion forces, temporary induced dipole forces
(iii) Hydrogen bonding is stronger (than van der Waals forces)/IMF in ice stronger (than IMF in methane)/H bonds take more energy to break

Not H Bonds are strong (needs comparison)
If (b)(i) OR (ii) is incorrect, cannot award (b)(iii)
If (b)(i) and/or (ii) is blank, can score (b)(iii)
(c) (i) Structure showing 3 bonds to H and 1 lone pair
(trigonal) pyramid(al)/(distorted) tetrahedral
do not insist on the + sign
Allow triangular pyramid
Not square pyramid
Ignore bond angles in structure
M2 independent of M1
(ii) 107°

Allow range 106-108
Ignore ${ }^{\circ}(\mathrm{C})$
(iii) $\mathrm{NH}_{3} /$ ammonia

Contradictions (eg NH ${ }_{4}$ ammonia) $\mathrm{CE}=0$
(d) 3

Allow three/III/3 lone pairs/3lp/3 lone pairs of electrons

M2. (a) Ability/power of an atom/element/nucleus to withdraw electron density or electron cloud or a pair of electrons (towards itself);

Not withdraw an electron
If ref to ionic, metallic, imf etc then $C E=0$

From a covalent bond or from a shared pair of electrons;
Not distort
Not remove electrons
(b) Van der Waals/ vdw/London/ temporary (induced) dipole/ dispersion forces;

Hydrogen bonds/H bonds;
Not just hydrogen
(c) (Large) electronegativity difference between $\mathrm{N}+\mathrm{H} /$ difference of 0.9 / N very electronegative;

Insufficient to say $N=3.1$ and $H=2.1$

Forms N $\delta-/ \operatorname{H} \delta+$ or dipole explained in words;

Not N becomes (fully) negative or vice versa

Lone pair on N attracts/forms weak bonds with $\mathrm{H}(\delta+$);
QWC
Can score M2 and 3 from a diagram
(d) Co-ordinate/dative;

If not correct then $C E=0$. If covalent/blank mark on.

Both electrons/ lone pair (on $\mathrm{P} / \mathrm{PH}_{3}$)
Not lone pair on hydrogen

Shares/donated from $\mathrm{P}\left(\mathrm{H}_{3}\right) /$ to $\mathrm{H}(\delta+)$;
(e) 3 bonds and 1 lp attached to As;

Must label H and As atoms
Accept distorted tetrahedral not bent tetrahedral

Pyramidal/tetrahedral/ trigonal pyramidal;
Not bipyramidal/triangular
(f) (Only) weak Van der Waals forces between molecules $/ \mathrm{AsH}_{3}$ has weaker IMF /ammonia has hydrogen bonding/ more energy needed to break IMF's in ammonia/ Van der Waals weaker than H bonds;

Accept has no H bonds.
Ignore dp-dp in AsH_{3} provided ammonia has stronger IMF.
If between atoms mentioned $C E=0$
Break bonds $C E=0$
(g) $4 \mathrm{AsCl}_{3}+3 \mathrm{NaBH}_{4} \rightarrow 4 \mathrm{AsH}_{3}+3 \mathrm{NaCl}+3 \mathrm{BCl}_{3} ;$

Accept multiples

M3. (a) $2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$;
If ignored the $1 s^{2}$ given and written $1 s^{2} 2 s^{2} 2 p^{6}$ mark as correct Allow capitals and subscripts
(b) (i) $\quad \mathrm{Na}^{+}(\mathrm{g}) \rightarrow \mathrm{Na}^{2+}(\mathrm{g})+\mathrm{e}^{-(\text {;) }}$

One mark for equation and one mark for state symbols
$\mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{(-)} \rightarrow \mathrm{Na}^{2+}(\mathrm{g})+2 \mathrm{e}^{(-)} ;$
M2 dependent on M1
Allow $\mathrm{Na}^{+}(\mathrm{g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Na}(\mathrm{g})$
Allow $X^{+}(g) \rightarrow X^{2+}(g)+e=1$ mark
(ii) $\quad \mathrm{Na}^{(2+1}$ requires loss of e^{-}from a 2(p) orbital or $2^{\text {nd }}$ energy level or $2^{\text {nd }}$ shell and $\mathrm{Mg}^{\left({ }^{(t)}\right.}$ requires loss of e^{-}from a 3(s) orbital or $3^{\text {dd }}$ energy level or $3^{\text {rd }}$ shell / $\mathrm{Na}^{(2+)}$ loses e from a lower (energy) orbital/ or vice versa;

Not from 3p

Or vice versa for Mg
$\mathrm{e}^{-\mathrm{l}}$ closer to nucleus/ more attraction (of electron to nucleus) (in Na);
M3 needs to be comparative
(iii) Aluminium /AI;
(c) Decreases;

If not decreases $C E=0$ If blank, mark on

Increasing nuclear charge/ increasing number of protons;

Electrons in same shell or level/ same shielding/ similar shielding;
(d) Answer refers to Na ;

Allow converse answers relating to Mg .
Na fewer protons/smaller nuclear charge/ fewer delocalised electrons;
Allow Mg is 2+ and Na is + .
If $v d w C E=0$.

Na is a bigger ion/ atom;

Smaller attraction between nucleus and delocalised electrons;
If mentioned that charge density of Mg^{2+} is greater then allow
first 2 marks.
(ie charge / size / attraction).
M3 allow weaker metallic bonding.
(e) (Bent) shape showing 2 lone pairs $+2 \mathrm{~N}-\mathrm{H}$ bond pairs;

Atoms must be labelled.
Lone pairs can be with or without lobes.

Bent / v shape/ triangular;
Not tetrahedral.
Allow non-linear.
Bent-linear $=$ contradiction.
(f) Ne has full sub-levels/ can't get any more electrons in the sub-levels/ Ne has full shells;

Not $2 s^{2} 2 p^{6}$ alone.
Not stable electron configuration.

M4. (a) (i) shared pair of electrons
Can have one electron from each atom contributes to the bond
Not both electrons from one atom
(ii) $\frac{1}{2} \mathrm{Cl}_{2}+\frac{3}{2} \mathrm{~F}_{2} \rightarrow \mathrm{ClF}_{3}$

Only
Ignore state symbols even if wrong
(b)

OR
Allow any structure with 4 bp
In CClF_{2}, watch for Cl in centre- it must be C
Ignore wrong bond angles
Representations of lone pairs allowed are the two examples shown with or without the electrons in the lobe.
Also they can show the lone pair for either structure by two crosses/dots or a line with two crosses/dots on it e.g.

Or a structure with 3 bp and 2 Ip
(c) Dipole - dipole

Allow van der Waals/vdw/London/dispersion/temporary dipole - induced dipole Not dipole alone
(Lone) pair of electrons/both electrons (on F^{-}) $C E$ if lone pair is from B

Donated from F -fluoride or donated to the BF_{3}
Must have the - sign on the F ie FIgnore FFM3 dependent on M2
(ii) 109° to 109.5°
(e) $\frac{238 \times 100}{438}$

For 1 mark allow 238 as numerator and 438 as denominator or correct strings

2 marks if correct answer to 3 sig figs.
54% or greater than 3 sig figs = 1 mark

M5.

Mark M1 - M5 independently
M1 for 5 bond pairs around As
Do not penalise A for As or FI for F
trigonal/triangular bipyramid(al)
Allow trigonal dipyramid

M3 for 2 bond pairs to F and 2 lone pairs
Lone pairs can be shown as lobes with or without electrons or as $x x$ or
$\frac{x}{x}$

Bent/V shape/non-linear/triangular/angular
Bent-linear = contradiction
Do not allow trigonal
$104^{\circ}-106^{\circ}$
(For candidates who thought this was $\mathrm{CIF}_{2}{ }^{+}$which contained iodine allow

Trigonal/triangular planar
Not just triangular
120°

